Z function - definição. O que é Z function. Significado, conceito
Diclib.com
Dicionário Online

O que (quem) é Z function - definição


Z function         
  •  Z function in the complex plane, zoomed out.
MATHEMATICAL FUNCTION
Hardy function; Z-function
In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function.
Z-transform         
MATHEMATICAL TRANSFORM WHICH CONVERTS SIGNALS FROM THE TIME DOMAIN TO THE FREQUENCY DOMAIN
Z transform; Laurent transform; Bilateral Z-transform; Bilateral z-transform; Z Transform; Z-domain; Z-transformation
In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex frequency-domain (z-domain or z-plane) representation.
Riemann zeta function         
  • The pole at <math>z=1</math> and two zeros on the critical line.
  • The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(''s'') = 1/2. The first non-trivial zeros can be seen at Im(''s'') = ±14.135, ±21.022 and ±25.011.
  • Bernhard Riemann's article ''On the number of primes below a given magnitude''
  • 2}}}}.
ANALYTIC FUNCTION
Riemann Zeta function; Riemann zeta-function; Reimann Zeta function; Riemann's zeta function; Riemann Zeta Function; Reimann zeta function; Riemann ζ-function; Euler zeta function; Riemann zeta; Riemann zeta function zeros; Critical strip; Trivial zero; Ζ(s); Z(s); Riemann z-function; Series of reciprocal powers; Euler-Riemann zeta function; Riemann functional equation; Riemann's functional equation; Riemann-zeta function; Euler–Riemann zeta function; Ζ(x)
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots for \operatorname{Re}(s) > 1 and its analytic continuation elsewhere.
Exemplos de pronúncia para Z function
1. that just accommodates X, Y and Z function.
ted-talks_31_ThomMayne_2005-320k